Your study cart is empty!
Ho: each population has the same proportion of observations. That isP(level_1) population 1 = P(level_1) population 2 = . . . = P(level_1) population rP(level_2) population 1 = P(level_2) population 2 = . . . = P(level_2) population r..P(level_c) population 1 = P(level_c) population 2 = . . . = P(level_c) population r Ha: at least one of population has the different proportion of observations. That isP(level_1) population 1 ≠ P(level_1) population 2 ≠ . . . ≠ P(level_1) population rP(level_2) population 1 ≠ P(level_2) population 2 ≠ . . . ≠ P(level_2) population r..P(level_c) population 1 ≠ P(level_c) population 2 ≠ . . . ≠ P(level_c) population r
Ho: each population has the same proportion of observations. That is
P(level_1) population 1 = P(level_1) population 2 = . . . = P(level_1) population r
P(level_2) population 1 = P(level_2) population 2 = . . . = P(level_2) population r
.
P(level_c) population 1 = P(level_c) population 2 = . . . = P(level_c) population r
Ha: at least one of population has the different proportion of observations. That is
P(level_1) population 1 ≠ P(level_1) population 2 ≠ . . . ≠ P(level_1) population r
P(level_2) population 1 ≠ P(level_2) population 2 ≠ . . . ≠ P(level_2) population r
P(level_c) population 1 ≠ P(level_c) population 2 ≠ . . . ≠ P(level_c) population r
chisq(a,df)
P(CHISQ≥Chisq)
Reject Ho if chisq > chisq(a,df) or p-value < alpha
Developed by Versioning Solutions.